论文标题
高斯理论用于估计用反向动作逃避振荡器变量驱动的波动扰动
Gaussian theory for estimating fluctuating perturbations with back action evasive oscillator variables
论文作者
论文摘要
我们应用高斯状态形式主义,跟踪对谐波振荡器的位置和动量正交变量作用的波动扰动。遵循Tsang和Caves的开创性建议[Phys。莱特牧师。 105,123601(2010)],爱因斯坦 - 波多尔斯基 - 罗森 - 与辅助谐波振荡器的正交变量的相关性被利用可显着改善估计值,因为可以任意挤压相关的传感器变量,同时避免产生反向的,抗反式,抗抗抗脉冲,抗脉冲,抗脉冲。我们对系统连续监视的实时分析采用了量子探针和未知的经典扰动的混合量子古典描述,并且提供了一种一般形式主义来确定传感方案的成就以及它们如何依赖不同的参数。
We apply a Gaussian state formalism to track fluctuating perturbations that act on the position and momentum quadrature variables of a harmonic oscillator. Following a seminal proposal by Tsang and Caves [Phys. Rev. Lett. 105, 123601 (2010)], Einstein-Podolsky-Rosen correlations with the quadrature variables of an ancillary harmonic oscillator are leveraged to significantly improve the estimates as relevant sensor variables can be arbitrarily squeezed while evading adverse effects from the conjugate, anti-squeezed variables. Our real-time analysis of the continuous monitoring of the system employs a hybrid quantum-classical description of the quantum probe and the unknown classical perturbations, and it provides a general formalism to establish the achievements of the sensing scheme and how they depend on different parameters.