论文标题

在均匀加权超图的光谱半径上

On the spectral radius of uniform weighted hypergraph

论文作者

Sun, Rui, Wang, Wen-Huan

论文摘要

令$ \ mathbb {q} _ {k,n} $是带有$ n $ vertices的连接$ k $ - 均匀加权超图的集合,其中$ k,n \ geq 3 $。 For a hypergraph $G\in \mathbb{Q}_{k,n}$, let $\mathcal{A}(G)$, $\mathcal{L} (G)$ and $\mathcal{Q} (G)$ be its adjacency tensor, Laplacian tensor and signless Laplacian tensor, respectively.研究了$ \ MATHCAL {A}(G)$和$ \ MATHCAL {Q}(G)$的光谱半径。 $ H $ -EIGENVALUE的一些基本属性,$ h^{+} $ - eigenvalue和$ h^{++} $ - eigenvalue的$ \ Mathcal {a}(g)$,$ \ Mathcal {a} $,$ \ nathcal {l}(l}(g)$ and $ \ nathcal $ \ nathcal { $ H $ -EIGENVALUE的几个下限和上限,$ h^{+} $ - eIgenValue和$ h^{++} $ - eigenvalue for $ \ nathcal {a} a}(g)$,$ \ natercal {a}(g)$,$ \ nathcal {l}(l}(l}(g)$ and $ \ natuycal copl最大的$ h^{+} $ - $ \ MATHCAL {l}(g)$的EIGENVALUE和最小的$ h^{+} $ - $ \ MATHCAL {q}(g)$的EigenValue。 $ h $ -eigenValues的$ \ MATHCAL {l}(g)$,$ \ MATHCAL {q}(g)$和$ \ MATHCAL {a}(g)$也是如此。

Let $\mathbb{Q}_{k,n}$ be the set of the connected $k$-uniform weighted hypergraphs with $n$ vertices, where $k,n\geq 3$. For a hypergraph $G\in \mathbb{Q}_{k,n}$, let $\mathcal{A}(G)$, $\mathcal{L} (G)$ and $\mathcal{Q} (G)$ be its adjacency tensor, Laplacian tensor and signless Laplacian tensor, respectively. The spectral radii of $\mathcal{A}(G)$ and $\mathcal{Q} (G)$ are investigated. Some basic properties of the $H$-eigenvalue, the $H^{+}$-eigenvalue and the $H^{++}$-eigenvalue of $\mathcal{A}(G)$, $\mathcal{L} (G)$ and $\mathcal{Q} (G)$ are presented. Several lower and upper bounds of the $H$-eigenvalue, the $H^{+}$-eigenvalue and the $H^{++}$-eigenvalue for $\mathcal{A}(G)$, $\mathcal{L} (G)$ and $\mathcal{Q} (G)$ are established. The largest $H^{+}$-eigenvalue of $\mathcal{L} (G)$ and the smallest $H^{+}$-eigenvalue of $\mathcal{Q} (G)$ are characterized. A relationship among the $H$-eigenvalues of $\mathcal{L} (G)$, $\mathcal{Q} (G)$ and $\mathcal{A} (G)$ is also given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源