论文标题

使用borel-laplace sum规则提取$α_s$的tau衰减数据

Extraction of $α_s$ using Borel-Laplace sum rules for tau decay data

论文作者

Ayala, César, Cvetič, Gorazd, Teca, Diego

论文摘要

双钉Borel-Laplace Sum规则应用于Aleph $τ$ -DECAY数据。对于领先($ d = 0 $)ADLER功能,使用了肾上腺动机的扩展名,并且5循环系数为$ d_4 = 275 \ pm 63 $。两个$ d = 6 $项出现在截断的OPE($ d \ leq 6 $)中,以取消相应的肾上腺模棱两可。固定顺序扰动理论的两个变体和逆鲍勒变换应用于$ d = 0 $贡献的评估。截断索引$ n_t $是根据Momenta $ a^{(2,0)} $和$ a^{(2,1)} $的本地不敏感的要求确定的。获得的耦合的平均值为$α_s(m_τ^2)= 0.3235^{+0.0138} _ { - 0.0126} $ [$α_s(m_z^2)= 0.1191 = 0.1191 \ pm 0.0016 $]。理论上的不确定性明显大于实验。

Double-pinched Borel-Laplace sum rules are applied to ALEPH $τ$-decay data. For the leading-twist ($D=0$) Adler function a renormalon-motivated extension is used, and the 5-loop coefficient is taken to be $d_4=275 \pm 63$. Two $D=6$ terms appear in the truncated OPE ($D \leq 6$) to enable cancellation of the corresponding renormalon ambiguities. Two variants of the fixed order perturbation theory, and the inverse Borel transform, are applied to the evaluation of the $D=0$ contribution. Truncation index $N_t$ is fixed by the requirement of local insensitivity of the momenta $a^{(2,0)}$ and $a^{(2,1)}$ under variation of $N_t$. The averaged value of the coupling obtained is $α_s(m_τ^2)=0.3235^{+0.0138}_{-0.0126}$ [$α_s(M_Z^2)=0.1191 \pm 0.0016$]. The theoretical uncertainties are significantly larger than the experimental ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源