论文标题
在某些$ p_5 $ free Graphs的色数上
On the chromatic number of some $P_5$-free graphs
论文作者
论文摘要
令$ g $为图。我们说,如果对于$ g $,$ g $,$ v(h)$的每个感应子图$ h $,可以将$ g $划分为$ a $和$ b $,使$ h [a] $是完美的,而$ω(h [b])<ω(h)$。我们使用$ p_t $和$ c_t $分别表示$ t $顶点的循环。对于两个不相交的图,$ f_1 $和$ f_2 $,我们使用$ f_1 \ cup f_2 $用顶点套装$ v(f_1)\ cup v(f_2)$和edge set $ e(f_1)\ cup e(f_1)\ cup e(f_1)\ cup e(f_2)$,并使用$ f_1+f_2 $ cup $ cup $ v(f_1) Edge设置$ e(f_1)\ cup e(f_2)\ cup \ {xy \; | \; x \ in V(f_1)\ mbox {and} y \ in V(f_2)\} $。在本文中,我们证明(i)$(p_5,c_5,k_ {2,3})$ - 免费图是完全可分开的,(ii)$χ(g)\ le2Ω^2(g)-Ω(g)-ch)-x(g)-x(g)-3 $如果$ g $是$ is $ is $ is $(p_5,k_ {2,3}) $χ(g)\ le {3 \ fof 2}(ω^2(g)-Ω(g))$如果$ g $是$(p_5,p_5,k_1+2k_2)$ - 免费,和(iv)$χ(g)\ le3Ω(g)(g)+11 $ g $ g $ g $是$(p_5,k_1+k_1+k_1+cup)。
Let $G$ be a graph. We say that $G$ is perfectly divisible if for each induced subgraph $H$ of $G$, $V(H)$ can be partitioned into $A$ and $B$ such that $H[A]$ is perfect and $ω(H[B])<ω(H)$. We use $P_t$ and $C_t$ to denote a path and a cycle on $t$ vertices, respectively. For two disjoint graphs $F_1$ and $F_2$, we use $F_1\cup F_2$ to denote the graph with vertex set $V(F_1)\cup V(F_2)$ and edge set $E(F_1)\cup E(F_2)$, and use $F_1+F_2$ to denote the graph with vertex set $V(F_1)\cup V(F_2)$ and edge set $E(F_1)\cup E(F_2)\cup \{xy\;|\; x\in V(F_1)\mbox{ and } y\in V(F_2)\}$. In this paper, we prove that (i) $(P_5, C_5, K_{2, 3})$-free graphs are perfectly divisible, (ii) $χ(G)\le 2ω^2(G)-ω(G)-3$ if $G$ is $(P_5, K_{2,3})$-free with $ω(G)\ge 2$, (iii) $χ(G)\le {3\over 2}(ω^2(G)-ω(G))$ if $G$ is $(P_5, K_1+2K_2)$-free, and (iv) $χ(G)\le 3ω(G)+11$ if $G$ is $(P_5, K_1+(K_1\cup K_3))$-free.