论文标题

用于预测极端分位数的水文后处理

Hydrological post-processing for predicting extreme quantiles

论文作者

Tyralis, Hristos, Papacharalampous, Georgia

论文摘要

使用分位数回归算法进行的水文后处理构成了估计水文预测不确定性的主要手段。尽管如此,用于分位数回归的常规大样本理论在因变量的概率分布的尾部没有足够的应用。为了克服这一可能在洪水事件的兴趣时可能至关重要的局限性,此处引入了通过极端分位数回归进行水文后处理,以估算水文模型的响应的极端分位数。总而言之,新的水文后处理方法利用了山丘的估计器的性质,从极值理论推断了分位数回归对高分位数的预测。作为概念的证明,这里在这里对新方法进行了测试,该方法是由三个基于过程的水文模型为连续美国(CONUS)的三个基于过程的水文模型提供的,并与常规分数回归进行了比较。通过这种大规模比较,与使用极端分位数回归的水文后处理相比,使用常规分位数回归的水文后处理严重低估了高分子的高分子(在分位数0.9999),尽管这两种方法在较低的位置上都是等效的(在较低的位置0.9700处于较低的位置)。此外,可以表明,在相同的情况下,极端分位回归以效率估算高预测分位数,而在三种基于过程的水文模型的大样本研究中,平均而言是等效的。

Hydrological post-processing using quantile regression algorithms constitutes a prime means of estimating the uncertainty of hydrological predictions. Nonetheless, conventional large-sample theory for quantile regression does not apply sufficiently far in the tails of the probability distribution of the dependent variable. To overcome this limitation that could be crucial when the interest lies on flood events, hydrological post-processing through extremal quantile regression is introduced here for estimating the extreme quantiles of hydrological model's responses. In summary, the new hydrological post-processing method exploits properties of the Hill's estimator from the extreme value theory to extrapolate quantile regression's predictions to high quantiles. As a proof of concept, the new method is here tested in post-processing daily streamflow simulations provided by three process-based hydrological models for 180 basins in the contiguous United States (CONUS) and is further compared to conventional quantile regression. With this large-scale comparison, it is demonstrated that hydrological post-processing using conventional quantile regression severely underestimates high quantiles (at the quantile level 0.9999) compared to hydrological post-processing using extremal quantile regression, although both methods are equivalent at lower quantiles (at the quantile level 0.9700). Moreover, it is shown that, in the same context, extremal quantile regression estimates the high predictive quantiles with efficiency that is, on average, equivalent in the large-sample study for the three process-based hydrological models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源