论文标题

用于解决硬约束优化问题的量子算法

Quantum Algorithms for solving Hard Constrained Optimisation Problems

论文作者

Atchade-Adelomou, Parfait

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The thesis deals with Quantum Algorithms for solving Hard Constrained Optimization Problems. It shows how quantum computers can solve difficult everyday problems such as finding the best schedule for social workers or the path of a robot picking and batching in a warehouse. The path to the solution has led to the definition of a new artificial intelligence paradigm with quantum computing, quantum Case-Based Reasoning (qCBR) and to a proof of concept to integrate the capacity of quantum computing within mobile robotics using a Raspberry Pi 4 as a processor (qRobot), capable of operating with leading technology players such as IBMQ, Amazon Braket (D-Wave) and Pennylane. To improve the execution time of variational algorithms in this NISQ era and the next, we have proposed EVA: a quantum Exponential Value Approximation algorithm that speeds up the VQE, and that is, to date, the flagship of the quantum computation. To improve the execution time of variational algorithms in this NISQ era and the next, we have proposed EVA: a quantum Exponential Value Approximation algorithm that speeds up the VQE, and that is, to date, the flagship of the quantum computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源