论文标题
有关lyapunov-krasovskii功能的时间延迟系统的哪些ode-approximation方案
What ODE-Approximation Schemes of Time-Delay Systems Reveal about Lyapunov-Krasovskii Functionals
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The article proposes an approach to complete-type and related Lyapunov-Krasovskii functionals that neither requires knowledge of the delay-Lyapunov matrix function nor does it involve linear matrix inequalities. The approach is based on ordinary differential equations (ODEs) that approximate the time-delay system. The ODEs are derived via spectral methods, e.g., the Chebyshev collocation method (also called pseudospectral discretization) or the Legendre tau method. A core insight is that the Lyapunov-Krasovskii theorem resembles a theorem for Lyapunov-Rumyantsev partial stability in ODEs. For the linear approximating ODE, only a Lyapunov equation has to be solved to obtain a partial Lyapunov function. The latter approximates the Lyapunov-Krasovskii functional. Results are validated by applying Clenshaw-Curtis and Gauss quadrature to a semi-analytical result of the functional, yielding a comparable finite-dimensional approximation. In particular, the article provides a formula for a tight quadratic lower bound, which is important in applications. Examples confirm that this new bound is significantly less conservative than known results.