论文标题

人重新识别:对领域特定的开放挑战和未来趋势的回顾

Person Re-identification: A Retrospective on Domain Specific Open Challenges and Future Trends

论文作者

Zahra, Asmat, Perwaiz, Nazia, Shahzad, Muhammad, Fraz, Muhammad Moazam

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Person re-identification (Re-ID) is one of the primary components of an automated visual surveillance system. It aims to automatically identify/search persons in a multi-camera network having non-overlapping field-of-views. Owing to its potential in various applications and research significance, a plethora of deep learning based re-Id approaches have been proposed in the recent years. However, there exist several vision related challenges, e.g., occlusion, pose scale \& viewpoint variance, background clutter, person misalignment and cross-domain generalization across camera modalities, which makes the problem of re-Id still far from being solved. Majority of the proposed approaches directly or indirectly aim to solve one or multiple of these existing challenges. In this context, a comprehensive review of current re-ID approaches in solving theses challenges is needed to analyze and focus on particular aspects for further advancements. At present, such a focused review does not exist and henceforth in this paper, we have presented a systematic challenge-specific literature survey of 230+ papers between the years of 2015-21. For the first time a survey of this type have been presented where the person re-Id approaches are reviewed in such solution-oriented perspective. Moreover, we have presented several diversified prominent developing trends in the respective research domain which will provide a visionary perspective regarding ongoing person re-Id research and eventually help to develop practical real world solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源