论文标题
部分可观测时空混沌系统的无模型预测
BeDivFuzz: Integrating Behavioral Diversity into Generator-based Fuzzing
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A popular metric to evaluate the performance of fuzzers is branch coverage. However, we argue that focusing solely on covering many different branches (i.e., the richness) is not sufficient since the majority of the covered branches may have been exercised only once, which does not inspire a high confidence in the reliability of the covered code. Instead, the distribution of the executed branches (i.e., the evenness) should also be considered. That is, behavioral diversity is only given if the generated inputs not only trigger many different branches, but also trigger them evenly often with diverse inputs. We introduce BeDivFuzz, a feedback-driven fuzzing technique for generator-based fuzzers. BeDivFuzz distinguishes between structure-preserving and structure-changing mutations in the space of syntactically valid inputs, and biases its mutation strategy towards validity and behavioral diversity based on the received program feedback. We have evaluated BeDivFuzz on Ant, Maven, Rhino, Closure, Nashorn, and Tomcat. The results show that BeDivFuzz achieves better behavioral diversity than the state of the art, measured by established biodiversity metrics, namely the Hill numbers, from the field of ecology.