论文标题
在信用风险申请中自我激发的传染过程
A contagion process with self-exciting jumps in credit risk applications
论文作者
论文摘要
联合违约概率或公司之间违约总数的建模是减轻信用风险的关键问题之一,因为默认相关性显着影响投资组合损失分布,因此在为偿付能力分配资本中发挥了重要作用。在本文中,我们得出了一个封闭式的表达式,以违约,而单个公司的违约概率以及均等公司中$ t $ t $的违约总数的概率。我们使用传染过程来建模信用事件的到来,该信用事件的到来导致默认设置并开发一个框架,该框架使公司能够抵抗默认设置,而与标准强度的模型不同。我们假设推动信用事件的积分过程是由系统和特质组成的,其强度是由均值反复转移的仿射跳跃过程独立指定的,并具有自我激发的跳跃。所提出的框架具有捕获反馈效应的能力,这是默认事件中经验观察到的现象。我们进一步证明了如何使用所提出的框架来定价综合抵押债务义务(CDO),并获得封闭式解决方案以进行划分。最后,我们介绍了灵敏度分析,以证明控制传染作用对渠道传播和CDO的预期损失的不同参数的影响。
The modeling of the probability of joint default or total number of defaults among the firms is one of the crucial problems to mitigate the credit risk since the default correlations significantly affect the portfolio loss distribution and hence play a significant role in allocating capital for solvency purposes. In this article, we derive a closed-form expression for the probability of default of a single firm and the probability of the total number of defaults by any time $t$ in a homogeneous portfolio of firms. We use a contagion process to model the arrival of credit events that causes the default and develop a framework that allows firms to have resistance against default unlike the standard intensity-based models. We assume the point process driving the credit events to be composed of a systematic and an idiosyncratic component, whose intensities are independently specified by a mean-reverting affine jump-diffusion process with self-exciting jumps. The proposed framework is competent of capturing the feedback effect, an empirically observed phenomenon in the default events. We further demonstrate how the proposed framework can be used to price synthetic collateralized debt obligation (CDO) and obtain a closed-form solution for tranche spread. Finally, we present the sensitivity analysis to demonstrate the effect of different parameters governing the contagion effect on the spread of tranches and the expected loss of the CDO.