论文标题

使用遗传算法跨模态的神经结构探索

Accelerating Neural Architecture Exploration Across Modalities Using Genetic Algorithms

论文作者

Cummings, Daniel, Sridhar, Sharath Nittur, Sarah, Anthony, Szankin, Maciej

论文摘要

神经体系结构搜索(NAS)是自动化在计算机视觉和自然语言处理等领域的最佳深层神经网络体系结构自动化的研究,已经看到了机器学习研究社区的迅速增长。尽管NAS最近有许多进步,但在验证发现的架构时,搜索效率更高时,仍然有很大的重点放在降低验证架构时产生的计算成本。进化算法,特别是遗传算法,具有NAS中使用的历史,并继续获得流行度与其他优化方法,这是一种探索体系结构目标空间的高效方法。大多数NAS研究工作都围绕计算机视觉任务,直到最近才进行了其他模式,例如自然语言处理的快速增长领域。在这项工作中,我们展示了如何在迭代循环中与训练有素的客观预测指标配对,以以一种以机器翻译和图像分类方式来加速多目标建筑探索。

Neural architecture search (NAS), the study of automating the discovery of optimal deep neural network architectures for tasks in domains such as computer vision and natural language processing, has seen rapid growth in the machine learning research community. While there have been many recent advancements in NAS, there is still a significant focus on reducing the computational cost incurred when validating discovered architectures by making search more efficient. Evolutionary algorithms, specifically genetic algorithms, have a history of usage in NAS and continue to gain popularity versus other optimization approaches as a highly efficient way to explore the architecture objective space. Most NAS research efforts have centered around computer vision tasks and only recently have other modalities, such as the rapidly growing field of natural language processing, been investigated in depth. In this work, we show how genetic algorithms can be paired with lightly trained objective predictors in an iterative cycle to accelerate multi-objective architectural exploration in a way that works in the modalities of both machine translation and image classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源