论文标题
正规化弗雷霍尔姆决定因素的产品公式:两个新证明
The product formula for regularized Fredholm determinants: two new proofs
论文作者
论文摘要
对于$ m $ -summable运算符$ a $在可分离的希尔伯特空间中,较高的正规化弗雷姆决定符号$ \ det \ nolimits_m(i+a)$概括了古典的弗雷德霍尔姆决定因素。最近,Britz等人提供了产品公式的证明\ [ \ det \ nolimits_m \ bigl(((i+a)\ cdot(i+b)\ bigr) = \det\nolimits_m (I+A) \cdot \det\nolimits_m (I+B) \cdot \exp\operatorname{Tr}\bigl({X_m(A,B)}\bigr), \] where $X_m(A,B)$ is an explicit polynomial in $A,B$ with values in the trace class operators.如果$ m = 1 $,则$ x_1(a,b)= 0 $,因此该公式将经典的行产品公式概括。 本注释的目的之一是介绍公式的两个非常简单的替代证明。第一个证明是先验分析,并利用了$ z \ mapsto \ det \ nolimits_m(i+za)$是holomorphic的事实,而第二个证明完全是代数。在我们看来,代数证明本身就痕迹和换向者有一些有趣的方面。 其次,我们将上述公式扩展到几个因素\ [ \ det \ nolimits_m \ bigl(\ prod_ {l = 1}^r(i+a_l)\ bigr) = \ left(\ prod_ {l = 1}^r \ det \ nolimits_m(i+a_l)\ right) \ cdot \ exp \ operatorName {tr} \ bigl({x_ {m,r}(a_r,\ ldots,a_r)} \ bigr)。 \]后者不仅仅是一个直接的概括,因为我们将获得对其背后的组合学的更多见解。另外,我们还将在正式力量系列的语言中提出一个代数的分析证明版本。结果是,这两个身份本质上只是组合。
For an $m$-summable operator $A$ in a separable Hilbert space the higher regularized Fredholm determinant $\det\nolimits_m(I+A)$ generalizes the classical Fredholm determinant. Recently, Britz et al presented a proof of a product formula \[ \det\nolimits_m\bigl( (I+A)\cdot(I+B) \bigr) = \det\nolimits_m (I+A) \cdot \det\nolimits_m (I+B) \cdot \exp\operatorname{Tr}\bigl({X_m(A,B)}\bigr), \] where $X_m(A,B)$ is an explicit polynomial in $A,B$ with values in the trace class operators. If $m=1$ then $X_1(A,B)=0$, hence the formula generalizes the classical determinant product formula. One of the purposes of this note is to present two very simple alternative proofs of the formula. The first proof is a priori analytic and makes use of the fact that $z\mapsto \det\nolimits_m(I+zA)$ is holomorphic, while the second proof is completely algebraic. The algebraic proof has, in our opinion, some interesting aspects in its own about the trace and commutators. Secondly, we extend the above mentioned formula to several factors \[ \det\nolimits_m\Bigl( \prod_{l=1}^r (I+A_l) \Bigr) =\left( \prod_{l=1}^r \det\nolimits_m (I+A_l) \right) \cdot \exp\operatorname{Tr}\bigl({X_{m,r}(A_r,\ldots,A_r)}\bigr). \] The latter is more than just a straightforward generalization as we will gain more insights into the combinatorics behind it. Also we will present an algebraized version of the analytic proof in the language of formal power series. The upshot is that the two identities are just combinatorial in nature.