论文标题
帕金森氏病的早期疾病阶段表征来自静止状态fMRI数据,使用长期短期记忆网络
Early Disease Stage Characterization in Parkinson's Disease from Resting-state fMRI Data Using a Long Short-term Memory Network
论文作者
论文摘要
帕金森氏病(PD)是一种常见且复杂的神经退行性疾病,在Hoehn和Yahr缩放中有5个阶段。鉴于PD的异质性,对早期阶段1和2进行分类并检测脑功能改变是一项挑战。功能磁共振成像(fMRI)是揭示功能连通性(FC)差异并在PD中发展生物标志物的有前途的工具。一些机器学习方法诸如支持向量机和逻辑回归已经成功地应用于PD的早期诊断,该数据使用fMRI数据进行了胜过,这些数据表现优于基于手动选择的形态特征的分类器。但是,FC变化的早期表征尚未得到充分研究。鉴于fMRI数据的复杂性和非线性性,我们建议使用长期记忆(LSTM)网络来表征PD的早期阶段。该研究包括来自帕金森氏症进步标记倡议(PPMI)的84名受试者(第2阶段和第28阶段),这是最大的公共PD数据集。在重复的10倍分层的交叉验证下,LSTM模型的准确性为71.63%,比最佳传统机器学习方法高13.52%,与其他机器学习分类器相比,稳健性和准确性明显更好。我们使用学习的LSTM模型权重选择有助于模型预测的顶部大脑区域,并进行了FC分析,以表征疾病阶段和运动障碍的功能变化,以更好地了解PD的大脑机制。
Parkinson's disease (PD) is a common and complex neurodegenerative disorder with 5 stages in the Hoehn and Yahr scaling. Given the heterogeneity of PD, it is challenging to classify early stages 1 and 2 and detect brain function alterations. Functional magnetic resonance imaging (fMRI) is a promising tool in revealing functional connectivity (FC) differences and developing biomarkers in PD. Some machine learning approaches like support vector machine and logistic regression have been successfully applied in the early diagnosis of PD using fMRI data, which outperform classifiers based on manually selected morphological features. However, the early-stage characterization in FC changes has not been fully investigated. Given the complexity and non-linearity of fMRI data, we propose the use of a long short-term memory (LSTM) network to characterize the early stages of PD. The study included 84 subjects (56 in stage 2 and 28 in stage 1) from the Parkinson's Progression Markers Initiative (PPMI), the largest available public PD dataset. Under a repeated 10-fold stratified cross-validation, the LSTM model reached an accuracy of 71.63%, 13.52% higher than the best traditional machine learning method, indicating significantly better robustness and accuracy compared with other machine learning classifiers. We used the learned LSTM model weights to select the top brain regions that contributed to model prediction and performed FC analyses to characterize functional changes with disease stage and motor impairment to gain better insight into the brain mechanisms of PD.