论文标题

哈密​​顿扩展的Krylov子空间法

The Hamiltonian Extended Krylov Subspace Method

论文作者

Benner, Peter, Faßbender, Heike, Senn, Michel-Niklas

论文摘要

用于构建扩展Krylov子空间$ \ Mathcal {k} _ {r,s} = \ operatorName {range} \ {u,hu,hu,hu,hu,h^2u,$ h^2u,$ h^ldots,$ h^ldots,$ h^^u,$ h^^u,hu, \ ldots,h^{ - 2s} u \},$其中$ h \ in \ mathbb {r}^{2n \ times 2n} $是衍生的大(且稀疏的)汉密尔顿矩阵(用于$ r = s+1 $或$ r = s $)。令人惊讶的是,这允许最多涉及以前生成的基础向量的短期复发。将$ h $投影到子空间$ \ Mathcal {k} _ {r,s} $产生一个小的汉密尔顿矩阵。可以使用所得的HEK算法来大约$ f(h)u $,其中$ f $是将hamiltonian矩阵$ h $映射到的函数,例如,a(skew-)hamiltonian或simplectic矩阵。数值实验表明,与使用其他(结构提供)Krylov子空间方法相比,与HEK算法相比,将$ f(h)u $与HEK算法相比具有竞争力。

An algorithm for constructing a $J$-orthogonal basis of the extended Krylov subspace $\mathcal{K}_{r,s}=\operatorname{range}\{u,Hu, H^2u,$ $ \ldots, $ $H^{2r-1}u, H^{-1}u, H^{-2}u, \ldots, H^{-2s}u\},$ where $H \in \mathbb{R}^{2n \times 2n}$ is a large (and sparse) Hamiltonian matrix is derived (for $r = s+1$ or $r=s$). Surprisingly, this allows for short recurrences involving at most five previously generated basis vectors. Projecting $H$ onto the subspace $\mathcal{K}_{r,s}$ yields a small Hamiltonian matrix. The resulting HEKS algorithm may be used in order to approximate $f(H)u$ where $f$ is a function which maps the Hamiltonian matrix $H$ to, e.g., a (skew-)Hamiltonian or symplectic matrix. Numerical experiments illustrate that approximating $f(H)u$ with the HEKS algorithm is competitive for some functions compared to the use of other (structure-preserving) Krylov subspace methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源