论文标题
离散的随机能量模型和一个步骤复制对称性破坏
The discrete random energy model and one step replica symmetry breaking
论文作者
论文摘要
当配置的能量仅采用整数值时,我们就可以解决随机能量模型。在热力学极限中,平均重叠保持尺寸取决于大小,并且随着系统尺寸的增加而振荡。虽然仍然可以通过一个步骤复制对称性破坏标准复制品计算来获得自由能的广泛部分,但不再有可能以这种方式恢复重叠。适应复制方法的一种可能方法是允许巴黎矩阵中的块的大小波动并采用复杂的值。
We solve the random energy model when the energies of the configurations take only integer values. In the thermodynamic limit, the average overlaps remain size dependent and oscillate as the system size increases. While the extensive part of the free energy can still be obtained by a standard replica calculation with one step replica symmetry breaking, it is no longer possible to recover the overlaps in this way. A possible way to adapt the replica approach is to allow the sizes of the blocks in the Parisi matrix to fluctuate and to take complex values.