论文标题

阴极发光激发光谱:激发途径的纳米级成像

Cathodoluminescence excitation spectroscopy: nanoscale imaging of excitation pathways

论文作者

Varkentina, Nadezda, Auad, Yves, Woo, Steffi Y., Zobelli, Alberto, Blazit, Jean-Denis, Li, Xiaoyan, Tencé, Marcel, Watanabe, Kenji, Taniguchi, Takashi, Stéphan, Odile, Kociak, Mathieu, Tizei, Luiz H. G.

论文摘要

遵循光激发从创造到光子衰减的寿命对于理解材料光学特性至关重要。从宏观上讲,诸如光致发光激发光谱之类的技术提供了有关材料的光体物理学的独特信息,其应用具有量子光学或光伏的多样化。材料激发和发射途径受纳米尺度变化的影响直接影响设备性能。但是,尽管技术,例如具有自由电子的光谱,具有相关的空间,光谱或时间分辨率,但仍无法直接访问它们。在这里,我们在两个代表性的光学设备中探索了光激发创造和衰减:等离激元纳米颗粒和发光2D层。一个令人兴奋的电子损失的能量的分析与可见的紫外光子及时相吻合,揭示了从激发到光发射的衰减途径。这对于相锁相互作用(例如局部表面等离子体)和非相锁定的相互作用(例如单个点缺陷的光发射)证明了这一点。这种新开发的阴极发光激发光谱图像能量转移途径在纳米尺度上。它扩大了可用于探索纳米级材料的工具集。

Following the lifespan of optical excitations from their creation to decay into photons is crucial in understanding materials optical properties. Macroscopically, techniques such as the photoluminescence excitation spectroscopy provide unique information on the photophysics of materials with applications as diverse as quantum optics or photovoltaics. Materials excitation and emission pathways are affected by nanometer scale variations directly impacting devices performances. However, they cannot be directly accessed, despite techniques, such as optical spectroscopies with free electrons, having the relevant spatial, spectral or time resolution. Here, we explore optical excitation creation and decay in two representative optical devices: plasmonic nanoparticles and luminescent 2D layers. The analysis of the energy lost by an exciting electron that is coincident in time with a visible-UV photon unveils the decay pathways from excitation towards light emission. This is demonstrated for phase-locked interactions, such as in localized surface plasmons, and non-phase-locked ones, such as the light emission by individual point defects. This newly developed cathodoluminescence excitation spectroscopy images energy transfer pathways at the nanometer scale. It widens the toolset available to explore nanoscale materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源