论文标题
结构意识无监督的标记为cine MRI合成与自我解脱
Structure-aware Unsupervised Tagged-to-Cine MRI Synthesis with Self Disentanglement
论文作者
论文摘要
周期重建正规化的对抗训练 - 例如Cyclean,Discogan和Dualgan-已通过未配对的训练数据广泛用于图像样式转移。然而,最近的一些作品表明,局部扭曲是频繁的,无法保证结构一致性。针对此问题,先前的工作通常依赖于其他细分或特定于任务的一致特征提取步骤。为了解决这个问题,这项工作旨在通过明确执行输入及其合成图像之间的结构对齐方式来学习一般的附加结构提取器。具体而言,我们提出了一种新颖的输入输出图像贴片自我训练方案,以实现潜在的解剖结构和成像方式的分离。遵循交替的培训协议,更新了翻译器和结构编码器。此外,信息W.R.T.通过不对称的对抗游戏可以消除成像方式。我们在1,768、416和1,560个未配对的受试者与标记和Cine磁共振成像中分别训练,验证和测试我们的网络,分别从总共二十个健康受试者中进行训练,分别显示出比竞争方法优越的性能。
Cycle reconstruction regularized adversarial training -- e.g., CycleGAN, DiscoGAN, and DualGAN -- has been widely used for image style transfer with unpaired training data. Several recent works, however, have shown that local distortions are frequent, and structural consistency cannot be guaranteed. Targeting this issue, prior works usually relied on additional segmentation or consistent feature extraction steps that are task-specific. To counter this, this work aims to learn a general add-on structural feature extractor, by explicitly enforcing the structural alignment between an input and its synthesized image. Specifically, we propose a novel input-output image patches self-training scheme to achieve a disentanglement of underlying anatomical structures and imaging modalities. The translator and structure encoder are updated, following an alternating training protocol. In addition, the information w.r.t. imaging modality can be eliminated with an asymmetric adversarial game. We train, validate, and test our network on 1,768, 416, and 1,560 unpaired subject-independent slices of tagged and cine magnetic resonance imaging from a total of twenty healthy subjects, respectively, demonstrating superior performance over competing methods.