论文标题
使用离散QCQP选择的最佳频道选择
Optimal channel selection with discrete QCQP
论文作者
论文摘要
在将网络部署到资源受限的环境中时,降低大型卷积神经网络的高计算成本至关重要。我们首先显示了最近的通道修剪方法的贪婪方法,忽略了相邻层中通道之间固有的二次耦合,并且在修剪过程中无法安全地删除不活跃的权重。此外,由于这些不活跃的权重,贪婪的方法无法保证满足给定的资源约束并以真正的目标偏离。在这方面,我们提出了一种新颖的频道选择方法,该方法通过离散的QCQP最佳选择通道,该方法可防止任何不活跃的权重,并保证在拖船,内存使用情况和网络大小方面紧紧满足资源约束。我们还提出了一个二次模型,该模型可以准确估计修剪网络的实际推理时间,这使我们能够采用推理时间作为资源约束选项。此外,我们将选择粒度扩展到通道并处理非序列连接的方法概括了我们的方法。我们在CIFAR-10和Imagenet上的实验表明,我们所提出的修剪方法优于各种网络体系结构上的其他固定物质通道修剪方法。
Reducing the high computational cost of large convolutional neural networks is crucial when deploying the networks to resource-constrained environments. We first show the greedy approach of recent channel pruning methods ignores the inherent quadratic coupling between channels in the neighboring layers and cannot safely remove inactive weights during the pruning procedure. Furthermore, due to these inactive weights, the greedy methods cannot guarantee to satisfy the given resource constraints and deviate with the true objective. In this regard, we propose a novel channel selection method that optimally selects channels via discrete QCQP, which provably prevents any inactive weights and guarantees to meet the resource constraints tightly in terms of FLOPs, memory usage, and network size. We also propose a quadratic model that accurately estimates the actual inference time of the pruned network, which allows us to adopt inference time as a resource constraint option. Furthermore, we generalize our method to extend the selection granularity beyond channels and handle non-sequential connections. Our experiments on CIFAR-10 and ImageNet show our proposed pruning method outperforms other fixed-importance channel pruning methods on various network architectures.