论文标题
在具有猝灭障碍的驱动系统中非平衡相变的木ki脉 - ZUREK机制
Kibble-Zurek Mechanism for Nonequilibrium Phase Transitions in Driven Systems with Quenched Disorder
论文作者
论文摘要
我们从数值上研究了二维颗粒组装的拓扑缺陷密度,该颗粒的二维组件通过淬火障碍而驱动的颗粒,这是淬灭速率的函数,这是通过从塑性无序流动状态到运动各向异性晶体的非平衡相变。在存在随机疾病的情况下,II型超导体,胶体和其他类似粒子样系统的涡流发生了这种类型的动态排序转变。我们发现,在过渡的有序侧,拓扑缺陷的密度将$ρ_d$ scale作为电源定律,$ρ_d\ propto 1/t_ {q}^β$,其中$ t_ {q} $是Quench跨过渡的时间。这种类型的缩放率是在千禧年的Kibble-Zurek机制中预测的,用于在连续相变的各种淬灭速率。我们表明,具有相同指数的缩放对猝灭障碍的各种强度具有。指数的价值可以连接到定向的渗透普遍性类别。我们的结果表明,kibble-zurek机制可以应用于一般的非平衡相变。
We numerically study the density of topological defects for a two-dimensional assembly of particles driven over quenched disorder as a function of quench rate through the nonequilibrium phase transition from a plastic disordered flowing state to a moving anisotropic crystal. A dynamical ordering transition of this type occurs for vortices in type-II superconductors, colloids, and other particle-like systems in the presence of random disorder. We find that on the ordered side of the transition, the density of topological defects $ρ_d$ scales as a power law, $ρ_d \propto 1/t_{q}^β$, where $t_{q}$ is the time duration of the quench across the transition. This type of scaling is predicted in the Kibble-Zurek mechanism for varied quench rates across a continuous phase transition. We show that scaling with the same exponent holds for varied strengths of quenched disorder. The value of the exponent can be connected to the directed percolation universality class. Our results suggest that the Kibble-Zurek mechanism can be applied to general nonequilibrium phase transitions.