论文标题

通过推断概率模型的推断,熵和信息的估计量

Estimators of Entropy and Information via Inference in Probabilistic Models

论文作者

Saad, Feras A., Cusumano-Towner, Marco, Mansinghka, Vikash K.

论文摘要

估计信息理论数量(例如熵和相互信息)对于统计和机器学习中的许多问题至关重要,但在高维度上具有挑战性。本文通过推理(EEVI)介绍了熵的估计器,该推理在概率生成模型中为任意变量提供了许多信息数量的上限和下限。这些估计器将重要性抽样与提案分布家族一起使用,其中包括摊销的变异推理和顺序的蒙特卡洛,可以针对目标模型量身定制,并用于以高精度挤压真实的信息值。我们介绍了EEVI的几种理论特性,并在医疗领域的两个问题上证明了可伸缩性和功效:(i)在诊断肝病的专家系统中,我们根据观察到的症状和患者归因的模式,根据它们对潜伏性疾病的信息进行排名; (ii)在碳水化合物代谢的微分方程模型中,我们找到了最佳的时间来进行血糖测量,鉴于他们的饮食和药物计划,可以最大程度地提高有关糖尿病患者胰岛素敏感性的信息。

Estimating information-theoretic quantities such as entropy and mutual information is central to many problems in statistics and machine learning, but challenging in high dimensions. This paper presents estimators of entropy via inference (EEVI), which deliver upper and lower bounds on many information quantities for arbitrary variables in a probabilistic generative model. These estimators use importance sampling with proposal distribution families that include amortized variational inference and sequential Monte Carlo, which can be tailored to the target model and used to squeeze true information values with high accuracy. We present several theoretical properties of EEVI and demonstrate scalability and efficacy on two problems from the medical domain: (i) in an expert system for diagnosing liver disorders, we rank medical tests according to how informative they are about latent diseases, given a pattern of observed symptoms and patient attributes; and (ii) in a differential equation model of carbohydrate metabolism, we find optimal times to take blood glucose measurements that maximize information about a diabetic patient's insulin sensitivity, given their meal and medication schedule.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源