论文标题
通过输入过滤迈向有效且强大的神经木马防御
Towards Effective and Robust Neural Trojan Defenses via Input Filtering
论文作者
论文摘要
特洛伊木马对深度神经网络的攻击既危险又秘密。在过去的几年中,特洛伊木马的攻击从仅使用单个输入 - 反应触发器,而仅针对一个类别来使用多个输入特定的触发器并定位多个类。但是,特洛伊木马的防御尚未赶上这一发展。大多数防御方法仍然使对特洛伊木马触发器和目标类别的假设不足,因此,现代特洛伊木马的攻击很容易被规避。为了解决这个问题,我们提出了两个新颖的“过滤”防御措施,称为变异输入过滤(VIF)和对抗输入过滤(AIF),它们分别利用有损数据压缩和对抗性学习,以有效地净化潜在的Trojan Trojan触发时间在运行中的输入中,而无需对触发器/目标类别或intput claste clastect of trig epput clast of trig epput clast of trig epptig clast of trig epptig clast of trig epptig clast或trig epput clate clate clast of trig依存。此外,我们还引入了一种称为“过滤 - 对抗性”(FTC)的新防御机制,该机制有助于避免通过“过滤”引起的清洁数据的分类准确性下降,并将其与VIF/AIF结合起来,从而得出此类的新防御。广泛的实验结果和消融研究表明,我们提出的防御能力在减轻五种高级特洛伊木马攻击方面显着优于众所周知的基线防御能力,包括最近的两次最新一次,同时对少量的训练数据和大型触发器非常强大。
Trojan attacks on deep neural networks are both dangerous and surreptitious. Over the past few years, Trojan attacks have advanced from using only a single input-agnostic trigger and targeting only one class to using multiple, input-specific triggers and targeting multiple classes. However, Trojan defenses have not caught up with this development. Most defense methods still make inadequate assumptions about Trojan triggers and target classes, thus, can be easily circumvented by modern Trojan attacks. To deal with this problem, we propose two novel "filtering" defenses called Variational Input Filtering (VIF) and Adversarial Input Filtering (AIF) which leverage lossy data compression and adversarial learning respectively to effectively purify potential Trojan triggers in the input at run time without making assumptions about the number of triggers/target classes or the input dependence property of triggers. In addition, we introduce a new defense mechanism called "Filtering-then-Contrasting" (FtC) which helps avoid the drop in classification accuracy on clean data caused by "filtering", and combine it with VIF/AIF to derive new defenses of this kind. Extensive experimental results and ablation studies show that our proposed defenses significantly outperform well-known baseline defenses in mitigating five advanced Trojan attacks including two recent state-of-the-art while being quite robust to small amounts of training data and large-norm triggers.