论文标题
$ \ re(s)<1/2 $的$ l $ functions $ l $ functions的衍生物的零
Zeros of derivatives of $L$-functions in the Selberg class on $\Re(s)<1/2$
论文作者
论文摘要
在本文中,我们表明,属于Selberg类的$ L $ function $ f $的Riemann假设意味着,$ f $的所有衍生物最多可以在关键线的左侧有限的许多零零,而虚线的假想零件大于一定常数。 1974年,莱文森和蒙哥马利为Riemann Zeta功能显示了这一点。
In this article, we show that the Riemann hypothesis for an $L$-function $F$ belonging to the Selberg class implies that all the derivatives of $F$ can have at most finitely many zeros on the left of the critical line with imaginary part greater than a certain constant. This was shown for the Riemann zeta function by Levinson and Montgomery in 1974.