论文标题

$ \ re(s)<1/2 $的$ l $ functions $ l $ functions的衍生物的零

Zeros of derivatives of $L$-functions in the Selberg class on $\Re(s)<1/2$

论文作者

Chaubey, Sneha, Khurana, Suraj Singh, Suriajaya, Ade Irma

论文摘要

在本文中,我们表明,属于Selberg类的$ L $ function $ f $的Riemann假设意味着,$ f $的所有衍生物最多可以在关键线的左侧有限的许多零零,而虚线的假想零件大于一定常数。 1974年,莱文森和蒙哥马利为Riemann Zeta功能显示了这一点。

In this article, we show that the Riemann hypothesis for an $L$-function $F$ belonging to the Selberg class implies that all the derivatives of $F$ can have at most finitely many zeros on the left of the critical line with imaginary part greater than a certain constant. This was shown for the Riemann zeta function by Levinson and Montgomery in 1974.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源