论文标题

临时卷积域的适应农作物生长预测的适应性学习

Temporal Convolution Domain Adaptation Learning for Crops Growth Prediction

论文作者

Wang, Shengzhe, Wang, Ling, Lin, Zhihao, Zheng, Xi

论文摘要

现有的深神经网络在农作物生长预测上主要依赖大量数据的可用性。实际上,很难收集足够的高质量数据来利用这些深度学习模型的全部潜力。在本文中,我们基于域的适应性学习构建了创新的网络体系结构,以预测农作物的生长曲线,而可用的作物数据有限。该网络体系结构通过合并开发的农作物模拟模型中生成的数据来克服数据可用性的挑战。我们是第一个使用时间卷积过滤器作为构造域适应网络体系结构的骨干,该骨干适用于具有目标域的训练数据非常有限的深度学习回归模型。我们进行实验以测试网络的性能,并将我们提出的体系结构与其他最先进的方法进行比较,包括最近基于LSTM的域适应网络体系结构。结果表明,所提出的基于时间卷积的网络体系结构不仅优于准确性,而且在模型大小和收敛速率上都优于所有基准。

Existing Deep Neural Nets on crops growth prediction mostly rely on availability of a large amount of data. In practice, it is difficult to collect enough high-quality data to utilize the full potential of these deep learning models. In this paper, we construct an innovative network architecture based on domain adaptation learning to predict crops growth curves with limited available crop data. This network architecture overcomes the challenge of data availability by incorporating generated data from the developed crops simulation model. We are the first to use the temporal convolution filters as the backbone to construct a domain adaptation network architecture which is suitable for deep learning regression models with very limited training data of the target domain. We conduct experiments to test the performance of the network and compare our proposed architecture with other state-of-the-art methods, including a recent LSTM-based domain adaptation network architecture. The results show that the proposed temporal convolution-based network architecture outperforms all benchmarks not only in accuracy but also in model size and convergence rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源