论文标题

严格的Grothendieck Topoi的宇宙

Strict universes for Grothendieck topoi

论文作者

Gratzer, Daniel, Shulman, Michael, Sterling, Jonathan

论文摘要

霍夫曼(Hofmann)和斯特雷希(Streicher)著名地展示了如何将绿色宇宙提升到前tpoii中,而史特雷切尔(Streicher)将其结果扩展到了捆式托托伊(Topoi)的情况。同时,Van den Berg和Moerdijk在代数集理论的背景下表明,即使在较弱的Metatheouries中,相似的结构也继续适用。不幸的是,造层化似乎并不能保留前膜宇宙所享有的重要重新调整属性,该属性在单价类型理论的模型以及综合泰特可计算性中起着至关重要的作用,这是一种建立类型理论和计划语言的句法属性的技术。在多个宇宙的背景下,重组属性还意味着在每个宇宙层面上选择连接剂的连贯代码,从而解释了Martin-Löf类型理论的流行表述中存在的累积定律。 我们观察到,对Shulman的论点进行了轻微的调整,该论点构建了一个累积的宇宙层次结构,该层次结构满足了任何Grothendieck Topos中各个级别的重组属性。因此,人们对Martin-Löf类型理论具有直接的解释,并在所有Grothendieck Topoi中都有累积的宇宙。另一个含义是将最近的合成方法的范围扩展到立方体类型理论的语义以及类型理论和编程语言的句法元素纪录到所有Grothendieck topoi。

Hofmann and Streicher famously showed how to lift Grothendieck universes into presheaf topoi, and Streicher has extended their result to the case of sheaf topoi by sheafification. In parallel, van den Berg and Moerdijk have shown in the context of algebraic set theory that similar constructions continue to apply even in weaker metatheories. Unfortunately, sheafification seems not to preserve an important realignment property enjoyed by the presheaf universes that plays a critical role in models of univalent type theory as well as synthetic Tait computability, a recent technique to establish syntactic properties of type theories and programming languages. In the context of multiple universes, the realignment property also implies a coherent choice of codes for connectives at each universe level, thereby interpreting the cumulativity laws present in popular formulations of Martin-Löf type theory. We observe that a slight adjustment to an argument of Shulman constructs a cumulative universe hierarchy satisfying the realignment property at every level in any Grothendieck topos. Hence one has direct-style interpretations of Martin-Löf type theory with cumulative universes into all Grothendieck topoi. A further implication is to extend the reach of recent synthetic methods in the semantics of cubical type theory and the syntactic metatheory of type theory and programming languages to all Grothendieck topoi.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源