论文标题
用于跟踪最短路径的多项式内核
Polynomial Kernels for Tracking Shortest Paths
论文作者
论文摘要
给定无向图$ g =(v,e)$,顶点$ s,t in v $和一个整数$ k $,跟踪最短路径需要确定是否存在一组$ k $ theTices $ t \ subseteq v $ v(p_1)\ neq t \ cap v(p_2)$。在本文中,我们为问题提供了第一个多项式尺寸内核。具体而言,我们显示了具有$ \ MATHCAL {O}(k^2)的内核的存在,$ pertices and Edges and Edges in Constrice Graphs中的边缘和带有$ \ Mathcal {O}(k)$ pertices和Edges的内核,用于dag问题中的跟踪路径的平面图中的tertices and Edges。这个问题承认了多项式参数转换到跟踪最短路径,这意味着具有$ \ MATHCAL {O}(k^4)的内核,用于跟踪一般图中最短路径的最短路径和带有$ \ Mathcal {O}(O}(k^2)$ Vertices和Edges和Edge的内核。基于上述,我们还提供了一种指数算法,用于跟踪平面图中的最短路径。
Given an undirected graph $G=(V,E)$, vertices $s,t\in V$, and an integer $k$, Tracking Shortest Paths requires deciding whether there exists a set of $k$ vertices $T\subseteq V$ such that for any two distinct shortest paths between $s$ and $t$, say $P_1$ and $P_2$, we have $T\cap V(P_1)\neq T\cap V(P_2)$. In this paper, we give the first polynomial size kernel for the problem. Specifically we show the existence of a kernel with $\mathcal{O}(k^2)$ vertices and edges in general graphs and a kernel with $\mathcal{O}(k)$ vertices and edges in planar graphs for the Tracking Paths in DAG problem. This problem admits a polynomial parameter transformation to Tracking Shortest Paths, and this implies a kernel with $\mathcal{O}(k^4)$ vertices and edges for Tracking Shortest Paths in general graphs and a kernel with $\mathcal{O}(k^2)$ vertices and edges in planar graphs. Based on the above we also give a single exponential algorithm for Tracking Shortest Paths in planar graphs.