论文标题
由随机二进制疾病引起的拓扑安德森绝缘子
Topological Anderson insulators induced by random binary disorders
论文作者
论文摘要
不同的疾病导致凝结物和人工系统中的各种定位和拓扑现象。在这里,我们研究具有空间相关的随机二进制疾病的一维su-Schrieffer-Heeger模型中的拓扑和定位性能。发现随机二元疾病可以在各种参数区域诱导来自微不足道绝缘子的拓扑式绝缘阶段。拓扑安德森绝缘子的特征是无序平均的绕组数和局部散装状态在真实和动量空间中均以反相反的比率所揭示。我们表明,拓扑相边界与自一致的天生方法和零能量模式的定位长度的分析结果一致,并讨论双峰概率如何影响障碍诱导的拓扑阶段。可以从原子或光子系统中的平均手性位移中检测到拓扑特征。我们的工作为拓扑安德森绝缘子提供了相关性疾病的情况的扩展。
Different disorders lead to various localization and topological phenomena in condensed matter and artificial systems. Here we study the topological and localization properties in one-dimensional Su-Schrieffer-Heeger model with spatially correlated random binary disorders. It is found that random binary disorders can induce the topological Anderson insulating phase from the trivial insulator in various parameter regions. The topological Anderson insulators are characterized by the disorder-averaged winding number and localized bulk states revealed by the inverse participation ratio in both real and momentum spaces. We show that the topological phase boundaries are consistent with the analytical results of the self-consistent Born approach and the localization length of zero-energy modes, and discuss how the bimodal probability affects the disorder-induced topological phases. The topological characters can be detected from the mean chiral displacement in atomic or photonic systems. Our work provides an extension of the topological Anderson insulators to the case of correlated disorders.