论文标题
轨道上的纠缠
Entanglement on Orbits
论文作者
论文摘要
多部分纠缠的研究不仅有趣,而且由于其在量子信息处理中的广泛应用而很重要。但是,许多各方的希尔伯特空间的复杂结构使多方纠缠变得极为复杂。然后值得研究希尔伯特空间本身的结构。在这项工作中,我们提供了一种研究SLOCC等效性结构并确定SLOCC等效类的无数参数的方法。此外,还引入了两名不同的纠缠证人。该方法与现有结果非常匹配,并且可以对更高的系统进行预测。
The study of multipartite entanglement is not only interesting but also important due to its wide application in quantum information processing. However, the complicated structure of the Hilbert space for many parties makes multipartite entanglement extremely complicated. It is then worth studying the structure of the Hilbert space itself. In this work, we provide a way to study the structure of SLOCC-equivalence and to determine the number free parameters for SLOCC-equivalent classes. Additionally, two different entanglement witnesses are introduced. The method matches well the existing results, and can make predictions for more-qubit systems.