论文标题

使用降低维度降低和聚类的人体运动检测

Human Motion Detection Using Sharpened Dimensionality Reduction and Clustering

论文作者

Heo, Jeewon, Kim, Youngjoo, Roerdink, Jos B. T. M.

论文摘要

最近引入了属于多维投影技术类别的缩减尺寸降低(SDR),以应对高维数据的探索性和视觉分析中的挑战。 SDR已应用于各种现实世界数据集,例如人类活动感官数据和天文数据集。但是,手动标记来自生成投影的样品很昂贵。为了解决这个问题,我们在这里建议使用聚类方法,例如K-均值,分层聚类,基于密度的基于密度的空间聚类(DBSCAN)(DBSCAN)和频谱聚类来轻松标记高维数据的2D预测。我们测试了SDR的管道和一系列合成和现实数据集的聚类方法,包括从智能手机加速度计提取的两个不同的公共人类活动数据集或各种运动的陀螺仪记录。我们应用聚类来评估SDR的视觉群集分离,无论是定性和定量上。我们得出的结论是,聚类SDR结果比集群普通DR产生更好的标记结果,而K-Means是SDR的推荐聚类方法,就聚类的准确性,易用性和计算可伸缩性而言。

Sharpened dimensionality reduction (SDR), which belongs to the class of multidimensional projection techniques, has recently been introduced to tackle the challenges in the exploratory and visual analysis of high-dimensional data. SDR has been applied to various real-world datasets, such as human activity sensory data and astronomical datasets. However, manually labeling the samples from the generated projection are expensive. To address this problem, we propose here to use clustering methods such as k-means, Hierarchical Clustering, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and Spectral Clustering to easily label the 2D projections of high-dimensional data. We test our pipeline of SDR and the clustering methods on a range of synthetic and real-world datasets, including two different public human activity datasets extracted from smartphone accelerometer or gyroscope recordings of various movements. We apply clustering to assess the visual cluster separation of SDR, both qualitatively and quantitatively. We conclude that clustering SDR results yields better labeling results than clustering plain DR, and that k-means is the recommended clustering method for SDR in terms of clustering accuracy, ease-of-use, and computational scalability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源