论文标题

非组织双平均和在线公平分配

Nonstationary Dual Averaging and Online Fair Allocation

论文作者

Liao, Luofeng, Gao, Yuan, Kroer, Christian

论文摘要

当这些物品在线到达时,我们考虑将项目公平分配给一组个人的问题。公平分配中的一个中心解决方案概念是竞争均衡:每个人都有人造货币的预算,并且由此产生的竞争平衡用于分配。对于在线公平分配上下文,Gao等人的速度算法。 [2021]利用双重平均算法近似竞争均衡。作者表明,当项目到达I.I.D时,该算法渐近地实现了离线竞争平衡分配的公平性和效率保证。但是,实际数据通常不是静止的。相反,可以将数据建模为对抗性,但这在实践中通常太悲观了。在考虑因素的激励下,我们研究了一个在线公平分配设置,该设置具有非组织项目的到达。为了解决此设置,我们首先为非组织输入模型下的双重平均算法开发新的在线学习结果。我们表明,双重平均迭代在均方根中收敛到“真实”随机优化问题的基础最佳解决方案,以及样本路径给出的有限 - 税问题的“事后观察”最佳解决方案。我们的结果适用于几种非组织输入模型:对抗性腐败,ergodic输入和块无关(包括定期)输入。在这里,均方误差上的绑定取决于输入的非平稳性度量。当输入数据为I.I.D.时,我们恢复经典界限。然后,我们证明我们的双重平均结果表明,在线公平分配的PACE算法同时实现了“两全其美”的“两全其美”,以确保针对这些输入模型中的任何一个。最后,我们进行数值实验,这些实验表现出针对非组织输入的强烈经验绩效。

We consider the problem of fairly allocating items to a set of individuals, when the items are arriving online. A central solution concept in fair allocation is competitive equilibrium: every individual is endowed with a budget of faux currency, and the resulting competitive equilibrium is used to allocate. For the online fair allocation context, the PACE algorithm of Gao et al. [2021] leverages the dual averaging algorithm to approximate competitive equilibria. The authors show that, when items arrive i.i.d, the algorithm asymptotically achieves the fairness and efficiency guarantees of the offline competitive equilibrium allocation. However, real-world data is typically not stationary. One could instead model the data as adversarial, but this is often too pessimistic in practice. Motivated by this consideration, we study an online fair allocation setting with nonstationary item arrivals. To address this setting, we first develop new online learning results for the dual averaging algorithm under nonstationary input models. We show that the dual averaging iterates converge in mean square to both the underlying optimal solution of the "true" stochastic optimization problem as well as the "hindsight" optimal solution of the finite-sum problem given by the sample path. Our results apply to several nonstationary input models: adversarial corruption, ergodic input, and block-independent (including periodic) input. Here, the bound on the mean square error depends on a nonstationarity measure of the input. We recover the classical bound when the input data is i.i.d. We then show that our dual averaging results imply that the PACE algorithm for online fair allocation simultaneously achieves "best of both worlds" guarantees against any of these input models. Finally, we conduct numerical experiments which show strong empirical performance against nonstationary inputs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源