论文标题

riemannian流形的变异问题,加速度有限

Variational problems on Riemannian manifolds with constrained accelerations

论文作者

Simoes, Alexandre Anahory, Colombo, Leonardo

论文摘要

我们在riemannian歧管上引入了差异问题,加速度有限,并在约束的变异问题中得出了正常极端的必要条件。该问题包括最大程度地减少高阶能量功能,这是一组受协变量加速度约束的可接受曲线。此外,我们使用此框架在存在这种类型的相反的情况下解决了弹性的问题,并避免了障碍物。

We introduce variational problems on Riemannian manifolds with constrained acceleration and derive necessary conditions for normal extremals in the constrained variational problem. The problem consists on minimizing a higher-order energy functional, among a set of admissible curves defined by a constraint on the covariant acceleration. In addition, we use this framework to address the elastic splines problem with obstacle avoidance in the presence of this type of contraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源