论文标题
riemannian流形的变异问题,加速度有限
Variational problems on Riemannian manifolds with constrained accelerations
论文作者
论文摘要
我们在riemannian歧管上引入了差异问题,加速度有限,并在约束的变异问题中得出了正常极端的必要条件。该问题包括最大程度地减少高阶能量功能,这是一组受协变量加速度约束的可接受曲线。此外,我们使用此框架在存在这种类型的相反的情况下解决了弹性的问题,并避免了障碍物。
We introduce variational problems on Riemannian manifolds with constrained acceleration and derive necessary conditions for normal extremals in the constrained variational problem. The problem consists on minimizing a higher-order energy functional, among a set of admissible curves defined by a constraint on the covariant acceleration. In addition, we use this framework to address the elastic splines problem with obstacle avoidance in the presence of this type of contraints.