论文标题

礼物:以冷启动视频点击直接率预测的图形引导功能转移

GIFT: Graph-guIded Feature Transfer for Cold-Start Video Click-Through Rate Prediction

论文作者

Hu, Sihao, Cao, Yi, Gong, Yu, Li, Zhao, Yang, Yazheng, Liu, Qingwen, Ji, Shouling

论文摘要

在过去的几年中,短视频在淘宝网等电子商务平台上见证了迅速的增长。为了确保内容的新鲜感,平台需要每天发布大量新视频,从而使传统的点击率(CTR)预测方法遇到了该项目冷启动问题。在本文中,我们提出了一种有效的图形引导特征传输系统的礼物,以充分利用加热视频的丰富信息,以补偿冷启动的视频。具体而言,我们建立了一个异质图,其中包含物理和语义链接,以指导从热启动视频到冷启动视频的功能传输过程。物理链接代表明确的关系,而语义链接衡量了两个视频的多模式表示的接近性。我们精心设计功能传输功能,以使图表上不同的Metapaths了解不同类型的传输特征(例如ID表示和历史统计)。我们对大型现实世界数据集进行了广泛的实验,结果表明,我们的礼品系统的表现明显优于SOTA方法,并在TAOBAO App的主页上为CTR带来了6.82%的提升。

Short video has witnessed rapid growth in the past few years in e-commerce platforms like Taobao. To ensure the freshness of the content, platforms need to release a large number of new videos every day, making conventional click-through rate (CTR) prediction methods suffer from the item cold-start problem. In this paper, we propose GIFT, an efficient Graph-guIded Feature Transfer system, to fully take advantages of the rich information of warmed-up videos to compensate for the cold-start ones. Specifically, we establish a heterogeneous graph that contains physical and semantic linkages to guide the feature transfer process from warmed-up video to cold-start videos. The physical linkages represent explicit relationships, while the semantic linkages measure the proximity of multi-modal representations of two videos. We elaborately design the feature transfer function to make aware of different types of transferred features (e.g., id representations and historical statistics) from different metapaths on the graph. We conduct extensive experiments on a large real-world dataset, and the results show that our GIFT system outperforms SOTA methods significantly and brings a 6.82% lift on CTR in the homepage of Taobao App.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源