论文标题
超越SYK模型中的ER = EPR
Going beyond ER=EPR in the SYK model
论文作者
论文摘要
我们讨论了TFD对双重密度矩阵的概括。我们建议半经典的虫洞对应于某些类别的密度矩阵,并指定它们的构造方式。不同的半古典轮廓对应于不同的非重叠密度矩阵。我们表明,这种语言允许在虫洞是半经典的何时超越纠缠的情况下的精细标准。我们的主要工具是SYK模型。我们专注于最简单的此类密度矩阵,以缩放限制限制,其中er桥是由从一个空间到另一个空间的和弦捕获的,编码了微观的哈密顿量中的相关性。虫洞的长度简单地编码从一侧流到另一侧时侵蚀这些相关性的程度。
We discuss generalizations of the TFD to a density matrix on the doubled Hilbert space. We suggest that a semiclassical wormhole corresponds to a certain class of such density matrices, and specify how they are constructed. Different semi-classical profiles correspond to different non-overlapping density matrices. We show that this language allows for a finer criteria for when the wormhole is semiclassical, which goes beyond entanglement. Our main tool is the SYK model. We focus on the simplest class of such density matrices, in a scaling limit where the ER bridge is captured by chords going from one space to another, encoding correlations in the microscopic Hamiltonian. The length of the wormhole simply encodes the extent these correlations are eroded when flowing from one side to the other.