论文标题

实践中的强化学习:机会和挑战

Reinforcement Learning in Practice: Opportunities and Challenges

论文作者

Li, Yuxi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This article is a gentle discussion about the field of reinforcement learning in practice, about opportunities and challenges, touching a broad range of topics, with perspectives and without technical details. The article is based on both historical and recent research papers, surveys, tutorials, talks, blogs, books, (panel) discussions, and workshops/conferences. Various groups of readers, like researchers, engineers, students, managers, investors, officers, and people wanting to know more about the field, may find the article interesting. In this article, we first give a brief introduction to reinforcement learning (RL), and its relationship with deep learning, machine learning and AI. Then we discuss opportunities of RL, in particular, products and services, games, bandits, recommender systems, robotics, transportation, finance and economics, healthcare, education, combinatorial optimization, computer systems, and science and engineering. Then we discuss challenges, in particular, 1) foundation, 2) representation, 3) reward, 4) exploration, 5) model, simulation, planning, and benchmarks, 6) off-policy/offline learning, 7) learning to learn a.k.a. meta-learning, 8) explainability and interpretability, 9) constraints, 10) software development and deployment, 11) business perspectives, and 12) more challenges. We conclude with a discussion, attempting to answer: "Why has RL not been widely adopted in practice yet?" and "When is RL helpful?".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源