论文标题
多边形仙人掌中的最大独立集
Maximal Independent Sets in Polygonal Cacti
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Counting the number of maximal independent sets of graphs was started over $50$ years ago by Erdős and Mooser. The problem has been continuously studied with a number of variations. Interestingly, when the maximal condition of an independent set is removed, such the concept presents one of topological indices in molecular graphs, the so called Merrifield-Simmons index. In this paper, we applied the concept of bivariate generating function to establish the recurrence relations of the numbers of maximal independent sets of regualr $n$-gonal cacti when $3 \leq n \leq 6$. By the ideas on meromorphic functions and the growth of power series coefficients, the asymptotic behaviors through simple functions of these recurrence relations have been established.