论文标题

部分可观测时空混沌系统的无模型预测

Simple models for macro-parasite distributions in hosts

论文作者

Lopez, Gonzalo Maximiliano, Aparicio, Juan Pablo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Negative binomial distribution is the most used distribution to model macro-parasite burden in hosts. However reliable maximum likelihood parameter estimation from data is far from trivial. No closed formula is available and numerical estimation requires sophisticated methods. Using data from the literature we show that simple alternatives to negative binomial, like zero-inflated geometric or hurdle geometric distributions, produce a good and even better fit to data than negative binomial distribution. We derived closed simple formulas for the maximum likelihood parameter estimation which constitutes a significant advantage of these distributions over negative binomial distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源