论文标题

NETRCA:有效的网络故障导致本地化算法

NetRCA: An Effective Network Fault Cause Localization Algorithm

论文作者

Zhang, Chaoli, Zhou, Zhiqiang, Zhang, Yingying, Yang, Linxiao, He, Kai, Wen, Qingsong, Sun, Liang

论文摘要

将网络故障的根本原因定位对于网络操作和维护至关重要。但是,由于复杂的网络体系结构和无线环境以及有限的标记数据,因此准确地定位真正的根本原因是具有挑战性的。在本文中,我们提出了一种名为NetRCA的小说算法来解决这个问题。首先,我们通过考虑时间,定向,归因和相互作用特征来从原始原始数据中提取有效的派生特征。其次,我们采用多元时间序列的相似性和标签传播来从标记和未标记数据中生成新的培训数据,以克服缺乏标记的样品。第三,我们设计了一个组合模型,该模型结合了XGBoost,规则集学习,归因模型和图形算法,以充分利用所有数据信息并增强性能。最后,在ICASSP 2022 AIOPS挑战的实际数据集上进行了实验和分析,以证明我们方法的优势和有效性。

Localizing the root cause of network faults is crucial to network operation and maintenance. However, due to the complicated network architectures and wireless environments, as well as limited labeled data, accurately localizing the true root cause is challenging. In this paper, we propose a novel algorithm named NetRCA to deal with this problem. Firstly, we extract effective derived features from the original raw data by considering temporal, directional, attribution, and interaction characteristics. Secondly, we adopt multivariate time series similarity and label propagation to generate new training data from both labeled and unlabeled data to overcome the lack of labeled samples. Thirdly, we design an ensemble model which combines XGBoost, rule set learning, attribution model, and graph algorithm, to fully utilize all data information and enhance performance. Finally, experiments and analysis are conducted on the real-world dataset from ICASSP 2022 AIOps Challenge to demonstrate the superiority and effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源