论文标题

UHF-RFID系统的ML辅助碰撞恢复

ML-Aided Collision Recovery for UHF-RFID Systems

论文作者

Akyildiz, Talha, Ku, Raymond, Harder, Nicholas, Ebrahimi, Najme, Mahdavifar, Hessam

论文摘要

我们建议使用机器学习(ML-ADED)进行碰撞恢复算法,以进行被动超高频(UHF)射频识别(RFID)系统。提出的方法旨在恢复碰撞下的标签以提高系统性能。我们首先通过利用机器学习工具来估计来自碰撞信号的标签数量,并证明可以高精度估算碰撞标签的数量。其次,我们采用一个简单而有效的深度学习模型来找到经验丰富的频道系数。所提出的方法允许读者通过应用最大似然解码将每个标签的信号与接收到的信号分开。我们执行模拟以说明深度学习的使用非常有益,并证明所提出的方法可以提高标准框架插入的Aloha(FSA)方案的吞吐量性能从0.368到1.837,其中接收器配备了单个天线并具有单个天线并能够解码4个标签。

We propose a collision recovery algorithm with the aid of machine learning (ML-aided) for passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) systems. The proposed method aims at recovering the tags under collision to improve the system performance. We first estimate the number of tags from the collided signal by utilizing machine learning tools and show that the number of colliding tags can be estimated with high accuracy. Second, we employ a simple yet effective deep learning model to find the experienced channel coefficients. The proposed method allows the reader to separate each tag's signal from the received one by applying maximum likelihood decoding. We perform simulations to illustrate that the use of deep learning is highly beneficial and demonstrate that the proposed approach boosts the throughput performance of the standard framed slotted ALOHA (FSA) protocol from 0.368 to 1.837, where the receiver is equipped with a single antenna and capable of decoding up to 4 tags.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源