论文标题

在表面的表示形式的卷胶配方中

Gluing Formulas for Volume Forms on Representation Varieties of Surfaces

论文作者

Erdal, Esma Dirican

论文摘要

令$σ_{g,n} $是一个紧凑的面向表面,属$ g \ geq 2 $由$ n $圆圈边界。由于Witten,扭曲的reidemister扭转与Atiyah-Bott-Goldman-Narasimhan narasimhan symbletectic形式的力量相吻合,在$π_1(σ_{g,0})$的代表空间中,在任何半简单的Lie lie Group中。在本文中,我们首先获得了$σ_{g,0} $的扭曲式粘合公式,以$σ_{2,2},$ $ $ $σ_{2,1},$和边界圆圈$ \ nathbb {s}^1. $ portious的$σ_{2,2},$ $ $σ_{2,1}。我们表明,$σ_{g,0} $在表示形式上的符号卷形式可以表示为圆形符号体积卷的产物,上面的相对表示形式$σ_{2,1} $和$σ_{2,2}。

Let $Σ_{g,n}$ be a compact oriented surface with genus $g\geq 2$ bordered by $n$ circles. Due to Witten, the twisted Reidemeister torsion coincides with a power of the Atiyah-Bott-Goldman-Narasimhan symplectic form on the space of representations of $π_1(Σ_{g,0})$ in any semi-simple Lie group. In the present paper, we first obtain a multiplicative gluing formula for the twisted Reidemeister torsion of $Σ_{g,0}$ in terms of torsions of $Σ_{2,2},$ $Σ_{2,1},$ and boundary circles $\mathbb{S}^1.$ Then, by using Heusener and Porti's results on $Σ_{g,n},$ we show that the symplectic volume form on the representation variety of $Σ_{g,0}$ can be expressed as a product of the holomorphic symplectic volume forms on the relative representation varieties of surfaces $Σ_{2,1}$ and $Σ_{2,2}.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源