论文标题

介质重建的莫伊尔异质结构中的激子

Excitons in mesoscopically reconstructed moiré heterostructures

论文作者

Zhao, Shen, Li, Zhijie, Huang, Xin, Rupp, Anna, Göser, Jonas, Vovk, Ilia A., Kruchinin, Stanislav Yu., Watanabe, Kenji, Taniguchi, Takashi, Bilgin, Ismail, Baimuratov, Anvar S., Högele, Alexander

论文摘要

二维晶体的扭曲或晶格 - 固定式垂直组件中的莫伊尔效应可产生一种新的具有丰富传输和光学现象的量子材料,包括半导体杂物结构中双层石墨烯和moiréexcitons平坦的型电子物理学。这些现象来自层间杂交对莫伊尔超级细胞的空间变化原子登记的调制。然而,由于有限的弹性,边缘扭曲的同质体和异质结构的格子可以从Moiré转变为带有三角形或六角形瓷砖的定期重建模式。在这里,我们将纳米级晶格重建的概念扩展到了扩展样品的介观量表,并在摩西$ _2 $ -WSE $ _2 $异质结构的光学研究中表现出丰富的后果,并具有并行和反平行的一致性。我们的结果提供了统一的观点,即通过识别具有具有不同有效维度的激烈式重建性的激烈性能,并确定具有固有有限有限的有限有限尺寸效果和障碍的真实样品和设备的引人入胜的尺寸特征,从而对半导体异质结构中的多元化和部分有争议的特征进行了统一的观点。将其概括至其他二维材料,具有新兴拓扑缺陷和渗透网络的中尺度结构域形成的概念将教导地扩展我们对范德华异质结构的基本电子,光学和磁性的理解。

Moiré effects in twisted or lattice-incommensurate vertical assemblies of two-dimensional crystals give rise to a new class of quantum materials with rich transport and optical phenomena, including correlated electron physics in flat bands of bilayer graphene and moiré excitons in semiconductor heterostructures. These phenomena arise from modulations of interlayer hybridization on the nanoscale of spatially varying atomic registries of moiré supercells. Due to finite elasticity, however, lattices of marginally-twisted homobilayers and heterostructures can transform from moiré to periodically reconstructed patterns with triangular or hexagonal tiling. Here, we expand the notion of nanoscale lattice reconstruction to the mesoscopic scale of extended samples and demonstrate rich consequences in optical studies of excitons in MoSe$_2$-WSe$_2$ heterostructures with parallel and antiparallel alignment. Our results provide a unified perspective on diverse and partly controversial signatures of moiré excitons in semiconductor heterostructures by identifying domains with exciton properties of distinct effective dimensionality and establish mesoscopic reconstruction as a compelling feature of real samples and devices with inherent finite-size effects and disorder. Generalized to stacks of other two-dimensional materials, this notion of mesoscale domain formation with emergent topological defects and percolation networks will instructively expand our understanding of fundamental electronic, optical, and magnetic properties of van der Waals heterostructures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源