论文标题

包图:多次实例学习使用贝叶斯图神经网络

Bag Graph: Multiple Instance Learning using Bayesian Graph Neural Networks

论文作者

Pal, Soumyasundar, Valkanas, Antonios, Regol, Florence, Coates, Mark

论文摘要

多次实例学习(MIL)是一个弱监督的学习问题,其目的是将标签分配给集合或袋子的实例,而不是传统的监督学习,在该学习中,每个实例都被认为是独立的,并且分布相同(IID),并且要单独标记。最近的工作显示了MIL环境中神经网络模型的有希望的结果。这些模型没有专注于每种实例,而是以端到端的方式进行培训,以通过将置换不变的池技术与神经体系结构相结合,以学习有效的行李级表示。在本文中,我们考虑使用图形和采用图形神经网络(GNN)来建模袋子之间的相互作用,以促进端到端的学习。由于很少有代表袋子之间依赖关系的有意义的图形,因此我们建议使用一个贝叶斯GNN框架,该框架可以为图案中存在不确定性或没有图形的情况生成可能的图形结构。经验结果证明了该技术对几项MIL基准任务和分配回归任务的功效。

Multiple Instance Learning (MIL) is a weakly supervised learning problem where the aim is to assign labels to sets or bags of instances, as opposed to traditional supervised learning where each instance is assumed to be independent and identically distributed (IID) and is to be labeled individually. Recent work has shown promising results for neural network models in the MIL setting. Instead of focusing on each instance, these models are trained in an end-to-end fashion to learn effective bag-level representations by suitably combining permutation invariant pooling techniques with neural architectures. In this paper, we consider modelling the interactions between bags using a graph and employ Graph Neural Networks (GNNs) to facilitate end-to-end learning. Since a meaningful graph representing dependencies between bags is rarely available, we propose to use a Bayesian GNN framework that can generate a likely graph structure for scenarios where there is uncertainty in the graph or when no graph is available. Empirical results demonstrate the efficacy of the proposed technique for several MIL benchmark tasks and a distribution regression task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源