论文标题
分散理论中的Kaon电磁形式
Kaon electromagnetic form factors in dispersion theory
论文作者
论文摘要
带电和中性峰的电磁形式因素受其低能量奇异性的强烈限制,在两位二值中间状态下的ISOVECTOR部分以及Isoscalar的贡献中,以$ω$和$ ϕ $残基的贡献。可以使用相应的$ππ\ to \ b k k k $部分波振幅和电pion电磁形式进行预测,而后一个参数需要从涉及kaons的电磁反应中确定。我们提出了实现所有这些约束的时间和间距数据的全球分析。结果实现了歧管应用:KAON电荷半径,对KAON电磁体的弹性贡献和对Dashen定理的校正,在HADRONE的光线(HLBL)散射中的Kaon Boxes以及Hadronic Vacuum Pallerization(HVP)中的$ n of $ ϕ $。我们的主要结果是:$ \ langle r^2 \ rangle_ \ text {c} = 0.359(3)\,\ text {fm}^2 $,$ \ langle r^2 \ rangle_ \ rangle_ \ text {n} $ε= 0.63(40)$,用于违反Dashen定理的弹性贡献,$a_μ^{k \ text {-box}} = - 0.48(1)\ times 10^{ - 11} $用于HLBL散射中的带电Kaon box的kaon box,以及$a_μ^\ text fext { 1.05 \,\ text {gev}] = 184.5(2.0)\ times 10^{ - 11} $,$a_μ^\ text {hvp} [k_sk_l,\ leq 1.05 \,\ leq 1.05 \,\ text {gev}] = 118.3(1.5)= 118.3(1.5)全局适合$ \ bar k k $给出$ \ bar m_ϕ = 1019.479(5)\,\ text {mev} $,$ \ barγ_ϕ = 4.207(8)\,\ \ \ \ text {mev} $,用于$ ϕ $ resonance参数,包括真空化效果。
The electromagnetic form factors of charged and neutral kaons are strongly constrained by their low-energy singularities, in the isovector part from two-pion intermediate states and in the isoscalar contribution in terms of $ω$ and $ϕ$ residues. The former can be predicted using the respective $ππ\to\bar K K$ partial-wave amplitude and the pion electromagnetic form factor, while the latter parameters need to be determined from electromagnetic reactions involving kaons. We present a global analysis of time- and spacelike data that implements all of these constraints. The results enable manifold applications: kaon charge radii, elastic contributions to the kaon electromagnetic self energies and corrections to Dashen's theorem, kaon boxes in hadronic light-by-light (HLbL) scattering, and the $ϕ$ region in hadronic vacuum polarization (HVP). Our main results are: $\langle r^2\rangle_\text{c}=0.359(3)\,\text{fm}^2$, $\langle r^2\rangle_\text{n}=-0.060(4)\,\text{fm}^2$ for the charged and neutral radii, $ε=0.63(40)$ for the elastic contribution to the violation of Dashen's theorem, $a_μ^{K\text{-box}}=-0.48(1)\times 10^{-11}$ for the charged kaon box in HLbL scattering, and $a_μ^\text{HVP}[K^+K^-, \leq 1.05\,\text{GeV}]=184.5(2.0)\times 10^{-11}$, $a_μ^\text{HVP}[K_SK_L, \leq 1.05\,\text{GeV}]=118.3(1.5)\times 10^{-11}$ for the HVP integrals around the $ϕ$ resonance. The global fit to $\bar K K$ gives $\bar M_ϕ=1019.479(5)\,\text{MeV}$, $\bar Γ_ϕ=4.207(8)\,\text{MeV}$ for the $ϕ$ resonance parameters including vacuum-polarization effects.