论文标题
太阳能原球盘内部区域中原始同位素梯度的证据
Evidence of a primordial isotopic gradient in the inner region of the solar protoplanetary disc
论文作者
论文摘要
取样的陆地世界(地球,火星和小行星4 vesta)在许多元素的质量非依赖性(核合成)同位素组成方面不仅有所不同(例如$ \ varepsilon^{48} $ ca,$ ca,$ \ varepsilon^54 $ \ varepsilon^{92} $ mo),其中一些同位素异常的幅度似乎与HeliePentric距离相关。尽管地球和火星之间的同位素差异可能很容易通过在原星盘的不同区域的主要局部材料积聚来解释,但尚不清楚这是否也适用于小行星维斯塔。在这里,我们分析了数值模拟数据库中的可用数据,以确定三种行星形成模型框架中Vesta的形成位置:经典,大钉和耗尽的碟片。我们发现,在模型中,内部圆盘中的材料混合受到限制,Vesta的可能性很高。这种有限的混合是由地球和火星之间的同位素差异所暗示的。根据我们的结果,我们提出了几个标准,以解释地球,火星和维斯塔的不同核合成同位素组成之间的明显相关性:(1)这些行星物体在椎间盘的不同区域中积聚了它们的构造块,(2)内部盘(2)由同位素梯度和(3)均匀的(3)均具有(3)的渐进性和(3)均具有(3)均具有(3)均为3),以及3)均为3)。通过圆盘中的材料混合稀释(例如,通过巨型行星迁移)。
Not only do the sampled terrestrial worlds (Earth, Mars, and asteroid 4 Vesta) differ in their mass-independent (nucleosynthetic) isotopic compositions of many elements (e.g. $\varepsilon^{48}$Ca, $\varepsilon^{50}$Ti, $\varepsilon^{54}$Cr, $\varepsilon^{92}$Mo), the magnitudes of some of these isotopic anomalies also appear to correlate with heliocentric distance. While the isotopic differences between the Earth and Mars may be readily accounted for by the accretion of mostly local materials in distinct regions of the protoplanetary disc, it is unclear whether this also applies to asteroid Vesta. Here we analysed the available data from our numerical simulation database to determine the formation location of Vesta in the framework of three planet-formation models: classical, Grand Tack, and Depleted Disc. We find that Vesta has a high probability of forming locally in the asteroid belt in models where material mixing in the inner disc is limited; this limited mixing is implied by the isotopic differences between the Earth and Mars. Based on our results, we propose several criteria to explain the apparent correlation between the different nucleosynthetic isotopic compositions of the Earth, Mars, and Vesta: (1) these planetary bodies accreted their building blocks in different regions of the disc, (2) the inner disc is characterised by an isotopic gradient, and (3) the isotopic gradient was preserved during the formation of these planetary bodies and was not diluted by material mixing in the disc (e.g. via giant planet migration).