论文标题

打击分配变化,以预测通过超网络预测

Combating Distribution Shift for Accurate Time Series Forecasting via Hypernetworks

论文作者

Duan, Wenying, He, Xiaoxi, Zhou, Lu, Thiele, Lothar, Rao, Hong

论文摘要

时间序列预测在城市生活中广泛应用,从空气质量监测到交通分析。但是,准确的时间序列预测是具有挑战性的,因为现实世界中的时间序列遇到了分配转移问题,在该问题中,它们的统计属性会随着时间而变化。尽管针对域适应或概括的分布变化的广泛解决方案,但它们在未知的,不断变化的分布变化中无法有效发挥作用,这在时间序列中很常见。在本文中,我们提出了超时序列预测(HTSF),这是一个基于超网的基于超网络的框架,用于在分布变化下预测。 HTSF以端到端的方式共同学习时间变化的分布和相应的预测模型。具体而言,HTSF利用超层来学习分布移位的最佳表征,从而为主层生成模型参数以进行准确的预测。我们将HTSF实现为可扩展的框架,可以结合不同的时间序列预测模型,例如RNN和Transformers。对9个基准测试的广泛实验表明,HTSF实现了最先进的性能。

Time series forecasting has widespread applications in urban life ranging from air quality monitoring to traffic analysis. However, accurate time series forecasting is challenging because real-world time series suffer from the distribution shift problem, where their statistical properties change over time. Despite extensive solutions to distribution shifts in domain adaptation or generalization, they fail to function effectively in unknown, constantly-changing distribution shifts, which are common in time series. In this paper, we propose Hyper Time- Series Forecasting (HTSF), a hypernetwork-based framework for accurate time series forecasting under distribution shift. HTSF jointly learns the time-varying distributions and the corresponding forecasting models in an end-to-end fashion. Specifically, HTSF exploits the hyper layers to learn the best characterization of the distribution shifts, generating the model parameters for the main layers to make accurate predictions. We implement HTSF as an extensible framework that can incorporate diverse time series forecasting models such as RNNs and Transformers. Extensive experiments on 9 benchmarks demonstrate that HTSF achieves state-of-the-art performances.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源