论文标题
基于深度学习的域适应线粒体对EM量的细分
Deep learning based domain adaptation for mitochondria segmentation on EM volumes
论文作者
论文摘要
大脑电子显微镜(EM)体积的精确分割对于表征细胞或细胞器水平的神经元结构至关重要。尽管有监督的深度学习方法在过去几年中导致了该方向的重大突破,但它们通常需要大量的带注释的数据才能接受培训,并且在类似的实验和成像条件下获得的其他数据效果不佳。这是一个称为域适应的问题,因为从样本分布(或源域)中学到的模型难以维持其对从不同分布或目标域提取的样品的性能。在这项工作中,我们解决了基于深度学习的域适应性的复杂案例,以跨不同组织和物种的EM数据集进行线粒体分割。我们提出了三种无监督的域适应策略,以根据(1)两个域之间的最新样式转移来改善目标域中的线粒体细分; (2)使用未标记的源和目标图像预先培训模型,然后仅用源标签对其进行微调; (3)具有标记和未标记图像的端到端训练的多任务神经网络体系结构。此外,我们提出了一个新的训练停止标准,该标准基于仅在源域中获得的形态学先验。我们使用三个公开可用的EM数据集进行了所有可能的跨数据库实验。我们评估了目标数据集预测的线粒体语义标签的拟议策略。此处介绍的方法优于基线方法,并与最新的状态相比。在没有验证标签的情况下,监视我们提出的基于形态的度量是停止训练过程并在平均最佳模型中选择的直观有效的方法。
Accurate segmentation of electron microscopy (EM) volumes of the brain is essential to characterize neuronal structures at a cell or organelle level. While supervised deep learning methods have led to major breakthroughs in that direction during the past years, they usually require large amounts of annotated data to be trained, and perform poorly on other data acquired under similar experimental and imaging conditions. This is a problem known as domain adaptation, since models that learned from a sample distribution (or source domain) struggle to maintain their performance on samples extracted from a different distribution or target domain. In this work, we address the complex case of deep learning based domain adaptation for mitochondria segmentation across EM datasets from different tissues and species. We present three unsupervised domain adaptation strategies to improve mitochondria segmentation in the target domain based on (1) state-of-the-art style transfer between images of both domains; (2) self-supervised learning to pre-train a model using unlabeled source and target images, and then fine-tune it only with the source labels; and (3) multi-task neural network architectures trained end-to-end with both labeled and unlabeled images. Additionally, we propose a new training stopping criterion based on morphological priors obtained exclusively in the source domain. We carried out all possible cross-dataset experiments using three publicly available EM datasets. We evaluated our proposed strategies on the mitochondria semantic labels predicted on the target datasets. The methods introduced here outperform the baseline methods and compare favorably to the state of the art. In the absence of validation labels, monitoring our proposed morphology-based metric is an intuitive and effective way to stop the training process and select in average optimal models.