论文标题

双连续半群的Lumer-Phillips类型生成定理

A Lumer-Phillips type generation theorem for bi-continuous semigroups

论文作者

Budde, Christian, Wegner, Sven-Ake

论文摘要

著名的1960年代的Lumer-Phillips定理指出,Banach Space $ x $上的封闭且定义的操作员$ a \ colon d(a)\ subseteq x \ rightarrow x $ x $在$(a,d(a))$ avisipative and $ $ formip $ formip ys $ formetive $ formipive $(A,d(a)时,才会产生强烈的连续收缩半元素。在本文中,我们为双连续半群建立了此结果的版本,并将后者在其他示例中应用于传输方程,以及在无限网络上流动。

The famous 1960s Lumer-Phillips Theorem states that a closed and densely defined operator $A\colon D(A)\subseteq X\rightarrow X$ on a Banach space $X$ generates a strongly continuous contraction semigroup if and only if $(A,D(A))$ is dissipative and the range of $λ-A$ is surjective in $X$ for some $λ>0$. In this paper, we establish a version of this result for bi-continuous semigroups and apply the latter amongst other examples to the transport equation as well as to flows on infinite networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源