论文标题

从不完整的层析成像数据中重建的功能重建

Feature reconstruction from incomplete tomographic data without detour

论文作者

Göppel, Simon, Frikel, Jürgen, Haltmeier, Markus

论文摘要

在本文中,我们考虑了不完整的X射线CT数据重建功能重建问题。例如,由于上下文医学成像的剂量减少,发生了此类问题。由于来自不完整数据的图像重建是一个严重的问题,因此重建的图像可能患有特征性的人工制品或缺失的特征,并且显着复杂化了随后的图像处理任务(例如,边缘检测或分段)。在本文中,我们引入了一个新颖的框架,以直接从CT数据中重建卷积图像特征,而无需计算重建FIR。在我们的框架内,我们使用非线性(变异)正则化方法,可以适应各种功能重建任务以及几种有限的数据情况。在我们的数值实验中,我们考虑了来自角度不足数据的边缘重建的几种实例,并表明我们的方法能够在这种情况下可靠地重建特征图。

In this paper, we consider the problem of feature reconstruction from incomplete x-ray CT data. Such problems occurs, e.g., as a result of dose reduction in the context medical imaging. Since image reconstruction from incomplete data is a severely ill-posed problem, the reconstructed images may suffer from characteristic artefacts or missing features, and significantly complicate subsequent image processing tasks (e.g., edge detection or segmentation). In this paper, we introduce a novel framework for the robust reconstruction of convolutional image features directly from CT data, without the need of computing a reconstruction firs. Within our framework we use non-linear (variational) regularization methods that can be adapted to a variety of feature reconstruction tasks and to several limited data situations . In our numerical experiments, we consider several instances of edge reconstructions from angularly undersampled data and show that our approach is able to reliably reconstruct feature maps in this case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源