论文标题

非平面散射幅度/威尔逊线双重性在强耦合时的TBA样方程

TBA-like equations for non-planar scattering amplitude/Wilson lines duality at strong coupling

论文作者

Ouyang, Hao, Shu, Hongfei

论文摘要

我们计算了一个弦世界表的最小区域,该区域在广告$ _3 $边界中的两个无限的周期性光明的威尔逊线上结束,这对于第一个非平面校正是双向校正,以$ \ nathcal {n} = 4 $ sym sym in the Grong coupling of $ \ Mathcal {n}中的Gluon散射幅度。使用Hitchin系统与热力学Bethe Ansatz(TBA)方程之间的连接,我们提出了一种分析方法,以计算最小面积表面并表达最小面积的非平凡部分,以TBA样方程的自由能。鉴于交叉比例为输入,从类似TBA的方程计算的区域匹配使用数值集成计算的。

We compute the minimal area of a string worldsheet ending on two infinite periodic light-like Wilson lines in the AdS$_3$ boundary, which is dual to the first non-planar correction to the gluon scattering amplitude in $\mathcal{N}=4$ SYM at the strong coupling. Using the connection between the Hitchin system and the thermodynamic Bethe ansatz (TBA) equations, we present an analytic method to compute the minimal area surface and express the non-trivial part of the minimal area in terms of the free energy of the TBA-like equations. Given the cross ratios as inputs, the area computed from the TBA-like equations matches that calculated using the numerical integration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源