论文标题
DS $ _ {D+1} $中的全息复杂性
Holographic Complexity in dS$_{d+1}$
论文作者
论文摘要
我们研究CV,CA和CV2.0在$(d+1)$ - 尺寸de Sitter SpaceTime中的全息复杂性的方法。我们发现全息复杂性和相应的增长率均列出了所有三种方法的普遍行为。特别是,全息复杂性表现出“超快”的生长[Arxiv:2109.14104],并且在(有限的)关键时期似乎与通用的力量定律不同。我们引入了一个截止表面以调节这种差异,随后的全息复杂性的随后生长是线性的。
We study the CV, CA, and CV2.0 approaches to holographic complexity in $(d+1)$-dimensional de Sitter spacetime. We find that holographic complexity and corresponding growth rate presents universal behaviour for all three approaches. In particular, the holographic complexity exhibits `hyperfast' growth [arXiv:2109.14104] and appears to diverge with a universal power law at a (finite) critical time. We introduce a cutoff surface to regulate this divergence, and the subsequent growth of the holographic complexity is linear in time.