论文标题
使用神经网络对网格图进行在线学习,以进行强大的检测和解码
Online Learning of Trellis Diagram Using Neural Network for Robust Detection and Decoding
论文作者
论文摘要
本文研究机器学习辅助的最大可能性(ML)和带有内存通信系统的后验(MAP)接收器,可以通过格子图建模。 ML/MAP接收器的先决条件是在网格图的不同状态转换下获得接收样品的可能性,该样品依赖于通道状态信息(CSI)和通道噪声的分布。我们建议使用通过试验序列训练的人工神经网络(ANN)实时学习格子图。这种方法被称为格子图(OLTD)的在线学习,不需要CSI或噪声的统计数据,并且可以将其纳入经典的Viterbi和BCJR算法中。 %与文献中最先进的Viterbinet和BCJRNET算法相比,它显示出在非高斯通道中的基于模型的方法显着优于基于模型的方法。与最先进的方法相比,它需要的培训开销要少得多,因此对于实际实施更可行。作为说明性的例子,将基于OLTD的BCJR应用于仅通过256个样本驾驶序列训练的蓝牙低能(BLE)接收器。此外,基于OLTD的BCJR可以容纳涡轮均衡,而最先进的BCJRNET/VITERBINET不能。作为一个有趣的副产品,我们通过向其物理层引入一些交叉来提出对BLE标准的增强。接收器敏感性的结果改善可以使其更适合某些物联网(IoT)通信。
This paper studies machine learning-assisted maximum likelihood (ML) and maximum a posteriori (MAP) receivers for a communication system with memory, which can be modelled by a trellis diagram. The prerequisite of the ML/MAP receiver is to obtain the likelihood of the received samples under different state transitions of the trellis diagram, which relies on the channel state information (CSI) and the distribution of the channel noise. We propose to learn the trellis diagram real-time using an artificial neural network (ANN) trained by a pilot sequence. This approach, termed as the online learning of trellis diagram (OLTD), requires neither the CSI nor statistics of the noise, and can be incorporated into the classic Viterbi and the BCJR algorithm. %Compared with the state-of-the-art ViterbiNet and BCJRNet algorithms in the literature, it It is shown to significantly outperform the model-based methods in non-Gaussian channels. It requires much less training overhead than the state-of-the-art methods, and hence is more feasible for real implementations. As an illustrative example, the OLTD-based BCJR is applied to a Bluetooth low energy (BLE) receiver trained only by a 256-sample pilot sequence. Moreover, the OLTD-based BCJR can accommodate for turbo equalization, while the state-of-the-art BCJRNet/ViterbiNet cannot. As an interesting by-product, we propose an enhancement to the BLE standard by introducing a bit interleaver to its physical layer; the resultant improvement of the receiver sensitivity can make it a better fit for some Internet of Things (IoT) communications.