论文标题
开放量子图的Weyl定律
Weyl Laws for Open Quantum Maps
论文作者
论文摘要
我们发现在半经典极限的量子开放式面包师地图的Weyl上限。对于环中的特征值数量,我们得出了渐近上限$ \数学$(n^δ)$,其中$δ$是面包师地图的陷阱集的维度和$(2πn)^{ - 1} $是$ $ \ \ \ n^$(n N)的$(2πn)^{ - 1} $是$(NAS)的$(NE)。此外,我们得出了一个Weyl上界,具有明确的依赖性对环的内半径,用于量子开放式面包师的地图,并带有Gevrey截止。
We find Weyl upper bounds for the quantum open baker's map in the semiclassical limit. For the number of eigenvalues in an annulus, we derive the asymptotic upper bound $\mathcal O(N^δ)$ where $δ$ is the dimension of the trapped set of the baker's map and $(2 πN)^{-1}$ is the semiclassical parameter, which improves upon the previous result of $\mathcal O(N^{δ+ ε})$. Furthermore, we derive a Weyl upper bound with explicit dependence on the inner radius of the annulus for quantum open baker's maps with Gevrey cutoffs.